On some generalisations of Brown’s conjecture

Bashir Ahmad Zargar*, Manzoor Ahmad

Department of Mathematics, University of Kashmir, Hazratbal, Srinagar

(Communicated by A. Ebadian)

Abstract

Let \(P \) be a complex polynomial of the form \(P(z) = z^{n-1} \prod_{k=1}^{n-1} (z - z_k) \), where \(|z_k| \geq 1, 1 \leq k \leq n - 1 \) then \(P'(z) \neq 0 \). If \(|z| < \frac{1}{n} \). In this paper, we present some interesting generalisations of this result.

Keywords: Critical points; Sendove’s Conjecture; Coincidence theorem of walsh.

1. Introduction and statement of the results

Let \(B(z, r) \) denote the open ball in \(C \) with centre \(z \) and radius \(r \) and \(\overline{B}(z, r) \) denote its closure. The Gauss Lucas Theorem states that every critical point of a complex polynomial \(P \) of degree at most \(n \) lies in the convex hull of its zeros. B. Sendove conjectured that if all the zeros of \(P \) lies in \(\overline{B}(0, 1) \) then for any zero \(w \) of \(P \) the disk \(\overline{B}(w, 1) \) contains at least one zero of \(P' \) see [4], problem 4.1. In connection with this conjecture Brown [3] posed the following problem.

Let \(Q_n \) denote the set of all complex polynomials of the form \(P(z) = z^{n-1} \prod_{k=1}^{n-1} (z - z_k) \), where \(|z_k| \geq 1, 1 \leq k \leq n - 1 \). Find the best constant \(C_n \) such that \(P'(z) \neq 0 \) in \(B(0, C_n) \) for all \(P \) in \(Q_n \). Brown conjectured that \(C_n = \frac{1}{n} \).

Recently, the conjecture was settled by Aziz and Zargar [2]. In fact by proving the following:

Theorem 1.1. For all \(P \) in \(Q_n \), \(P'(z) \) does not vanish if \(z \in \left(0, \frac{1}{n} \right) \).

*Corresponding author

Email addresses: bazargar@gmail.com (Bashir Ahmad Zargar), mwali@gmail.com (Manzoor Ahmad)

Received: February 2015 Revised: August 2015
Here, in this paper we shall present the following generalisation of Theorem 1.1.

Theorem 1.2. Let
\[P(z) = z^m \prod_{j=1}^{n-m} (z - z_j) \]
be a polynomial of degree n, with \(|z_j| \geq 1, j = 1, 2, \ldots n - m\). Then for \(1 \leq r \leq m\), the polynomial \(P'(z)\), the \(r\)th derivative of \(P(z)\) does not vanish in
\[0 < |z| < \frac{m(m-1)(m-2)\cdots (m-r+1)}{n(n-1)(n-2)\cdots (n-r+1)} \]

Remark 1.3. Taking \(r = 1, m = 1\), we get Theorem A (Browns Conjecture).

The following result immediately follows from the proof of Theorem 1.2.

Corollary 1.4. Let
\[P(z) = z^m \prod_{j=1}^{n-m} (z - z_j) \]
be a polynomial of degree \(n\), with \(|z_j| \geq 1, j = 1, 2, \ldots n - m\). Then the polynomial \(P''(z)\) does not vanish in
\[0 < |z| < \frac{m(m-1)}{n(n-1)} \]

Taking \(m = 2\) in Corollary 1.4, we get the following result.

Corollary 1.5. Let
\[P(z) = z^2 \prod_{j=1}^{n-2} (z - z_j) \]
be a polynomial of degree \(n\), with \(|z_j| \geq 1, j = 1, 2, \ldots n - 2\). Then the polynomial \(P''(z)\) does not vanish in
\[0 < |z| < \frac{2}{n(n-1)} \]

2. **Lemmas**

For the proof of Theorem 1.2 we need the following lemmas. The first lemma is Walsh’s Coincidence Theorem [1, p 47] (see also [1]).

Lemma 2.1. If \(G(z_1, z_2, \ldots, z_n)\) is a symmetric \(n\)-linear form of total degree \(n\) in \((z_1, z_2, \ldots, z_n)\) and let \(C\) be a circular region containing the \(n\) points \(\alpha_1, \alpha_2, \ldots, \alpha_n\) then there exists at least one point \(\alpha\) in \(C\) such that
\[G(\alpha_1, \alpha_2, \ldots, \alpha_n) = G(w_1, w_2, \ldots, w_n). \]

Lemma 2.2. If
\[P(z) = z^m \prod_{k=1}^{n-m} (z - z_k) \]
be a polynomial of degree \(n\), with \(|z_k| \geq 1, 1 \leq k \leq n - m\). Then for the polynomial \(P'(z)\) does not vanish in
\[0 < |z| < \frac{m}{n} \]
Lemma 2.2 is due to Aziz and Zargar [2].

Lemma 2.3. If \(P(z) \) is a Polynomial of degree \(n \) such that \(P(z) \) does not vanish in \(|z| < 1 \), then the polynomial \(zP'(z) + 2P(z) \) does not vanish in \(|z| < \frac{2}{n + 2} \).

Proof. By hypothesis

\[
P(z) = \prod_{k=1}^{n} (z - z_k)
\]

is a polynomial of degree \(n \) having all its zeros in \(|z| \geq 1 \), so that \(|z_k| \geq 1, k = 1, 2, \ldots, n \). We prove all the zeros of

\[
H(z) = zP'(z) + 2P(z)
\]

lie in

\[
|z| \geq \frac{2}{n + 2}.
\]

To prove this let \(w \) be any zero of \(P(z) \) then

\[
H(w) = zP'(w) + 2P(w) = 0.
\]

Clearly \(H(z) \) is linear symmetric in the zeros \(z_1, z_2, \ldots, z_n \) of \(P(z) \). Therefore by Lemma 2.1, we can find atleast one point \(\beta \) with \(|\beta| \geq 1 \), such that

\[
P(z) = (z - \beta)^n.
\]

which gives

\[
H(w) = wnP'(w - \beta)^{n-1} + 2P(w - \beta) = 0
\]

which implies

\[
(w - \beta)^{n-1}[nw + 2(w - \beta)] = 0
\]

which gives,

\[
(w - \beta) = 0, \text{ or } nw + (w - \beta) = 0.
\]

If \(w - \beta = 0 \), then clearly \(|w| = |\beta| \geq 1 \). Now if,

\[
w + (w - \beta) = 0
\]

then

\[
w = \frac{2\beta}{n + 2}
\]

which gives,

\[
|w| = \frac{2}{n + 2}|\beta| \geq \frac{2}{n + 2}.
\]

Since \(w \) is any zero of

\[
H(z) = zP'(z) + 2P(z)
\]

therefore, it follows that

\[
zP'(z) + 2P(z)
\]

does not vanish in

\[
|z| < \frac{2}{n + 2},
\]

which completes the proof of Lemma 2.3. \(\square \)
3. Proof of Theorem

Proof. We have

\[P(z) = z^m Q(z) \]

where

\[Q(z) = \prod_{j=1}^{n-m} (z - z_j), \quad |z_j| \geq 1, j = 1, 2, ..., n - m. \]

So, it follows by Lemma 2.2 that \(P'(z) \) does not vanish in the disk

\[0 < |z| < \frac{m}{n}. \]

That is

\[P'(z) = z^{m-1}(zQ'(z) + mzQ(z)) \]

where

\[T(z) = (zQ'(z) + mzQ(z)) \]

does not vanish in

\[0 < |z| < \frac{m}{n}. \]

Replacing \(z \) by \(\frac{mz}{n} \), it follows that

\[H(z) = P'\left(\frac{mz}{n}\right) \]

does not vanish in

\[0 < |z| < 1. \]

Now

\[H(z) = P'(\frac{mz}{n}) = (\frac{m}{n})^{m-1} z^{m-1} T\left(\frac{mz}{n}\right). \]

Applying Lemma 2.2 to the polynomial \(H(z) \), it follows that \(H'(z) \) does not vanish in the disk

\[0 < |z| < \frac{m-1}{n-1}. \]

Replacing \(z \) by \(\frac{nz}{m} \), we get \(P''(z) \) does not vanish in

\[0 < |z| < \frac{m(m-1)}{n(n-1)}. \]

\(n \geq 2 \) which yields that,

\[P''(z) = z^{m-1} T'(z) + (m-1) z^{m-2} T(z) \]

\[= z^{m-1} (z T'(z) + (m-1) T(z)) \]

\[= z^{m-1} R(z) \]
does not vanish in $0 < |z| < \frac{m(m-1)}{n(n-1)}$. Thus, it follows by Lemma 2.3 that

$$R(z) = (zT'(z) + (m-1)T(z))$$

does not vanish in $0 < |z| < \frac{m(m-1)}{n(n-1)}$. Replacing z by $\frac{m(m-1)}{n(n-1)}z$, we have

$$R\left(\frac{m(m-1)}{n(n-1)}z \right) = (m-1)T\left(\frac{m(m-1)}{n(n-1)}z \right) + \left(\frac{m(m-1)}{n(n-1)}z \right) T\left(\frac{m(m-1)}{n(n-1)}z \right)$$

does not vanish in $0 < |z| < 1$. Therefore, it follows that

$$S(z) = P''\left(\frac{m(m-1)}{n(n-1)}z \right)$$

$$= \left(\frac{m(m-1)}{n(n-1)}z \right)^{m-1}z^{m-1}R\left(\frac{m(m-1)}{n(n-1)}z \right)$$

does not vanish in $0 < |z| < 1$. Applying Lemma 2.2 we get

$$S'(z) = P''\left(\frac{m(m-1)}{n(n-1)}z \right)$$

does not vanish in $0 < |z| < \frac{(m-2)}{(n-2)}$ and this completes the proof of Theorem 1.2.

References