Nonlinear dynamic of the multicellular chopper

Philippe Djondiné a,b,*, Jean-Pierre Barbot b

a Department of Physics, Faculty of Science, The University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
b ECS-Lab, EA3649, ENSEA, Cergy Cedex, Cergy-Pontoise 95014, France, Laboratoire QUARTZ EA 7393

(Communicated by M. Eshaghi)

Abstract

In this paper, the dynamics of multicellular chopper are considered. The model is described by a continuous time three-dimensional autonomous system. Some basic dynamical properties such as Poincaré mapping, power spectrum and chaotic behaviors are studied. Analysis results show that this system has complex dynamics with some interesting characteristics.

Keywords: chaos; multicellular chopper, dynamical properties, chaotic attractor, routes to chaos. 2010 MSC: Primary 26A25; Secondary 39B62.

1. Introduction

A multilevel converter, which includes an array of power semiconductors and capacitor voltage sources, can synthesize a desired output voltage from several levels of dc voltages as inputs. With an increasing number of dc voltage sources, the converter output voltage waveform approaches a nearly sinusoidal waveform while using a fundamental frequency switching scheme [30]. The primary advantage of multilevel converters is generating high voltage with smaller steps at the output while the power semiconductors must withstand only reduced voltages; this will results in high power quality, lower harmonic components, better electromagnetic compatibility, and lower switching losses [29, 30, 33]. One of fundamental multilevel topologies is known as Multicell Converter, including Flying Capacitor Multicell (FCM) or serial multicellular, Stacked Multicell (SM), and Cascaded Multicell (CM) converters.

The serial multicellular converter has gained substantial interest in high power systems. It allows to synthesize high voltage multilevel waveforms using low voltage power semiconductors. The first serial multicellular converter was introduced in [28]. The power structure is an imbricated association of two or more commutation cells and flying capacitors, where the flying capacitor voltages determine...
the output waveform quality and the safe converter operation. However, a high number of voltage levels increases the control complexity and introduces a capacitor voltage imbalance problem. The capacitor imbalance problem can be addressed by open-loop or closed-loop control strategies. Open-loop schemes rely on the natural balancing property. Studies show that natural balancing will take place if the converter cells are commanded with symmetric pulse patterns. Moreover, natural voltage balancing dynamics improves if an auxiliary resonant resistive-capacitive-inductive circuit is connected in parallel with the load, or by modifying the phase–shifted pulse width modulation scheme. Approaches based on natural balancing are simple, but auxiliary circuits increase losses, and solutions relying on symmetric pulse patterns are risky due to errors introduced by non-ideal electronic components and related implementation issues. Closed-loop or active control improves balancing properties using closed-loop control strategies.

In recent decades, it was discovered that most of static converters were the seat of unknown nonlinear phenomena in power electronics. It is for example the case of multicellular choppers that can exhibit unusual behaviors and sometimes chaotic behaviors. Obviously, this may generate dramatical consequences. However, the usually averaged models do not allow to predict nonlinear phenomena encountered. By nature, these models obscure the essential nonlinearities. To analyses these strange behaviors, it is necessary to use a nonlinear hybrid dynamical model. There have been many methods for detecting chaos from order. Among them, routes to chaos, routes to chaos with phase portraits, first return map, Poincaré sections, Lyapunov exponents, fast Lyapunov indicators, and its generalized alignment index, bifurcations, power spectra, frequency analysis, 0-1 test, geometrical criteria, and fractal basin boundaries are developed in the literature. Each of these methods has its advantages and drawbacks in classifying the attractors. The main purpose of the present paper is to propose a framework of chaotic behavior study for two–cells chopper connected to a nonlinear load. Three chaotic indicators, considered in the above literature, will be studied by using numerical approaches such as Matlab/Simulink in the case of multicell chopper. The paper is structured as follows. Section deals with the modeling process. The electronic structure of the serial multicell chopper is addressed and the appropriate mathematical model is derived to describe the dynamics of the chopper. Two cells chopper modeling is then considered. Chaotic behavior and simulation results are presented in Section. Finally, some conclusion and remarks are reported in section.

2. Review of the multicellular converter and its operation

The multicellular converters are built starting from an association of a certain number of cells. At the output, one obtains levels. This association in series allows the output of the switches of the cells of commutation are independent, one obtains possible combinations. Thus, it is necessary to ensure an equilibrated distribution of the voltage of the floating condensers. Under these conditions, one obtains the following property:

The converter has floating voltages sources and the voltage of the capacity of index is . The control signal associated with each commutation cell is noted as where represents the number of cells of the topology. This signal will be equal to 1 when the upper switch of the cell is conducting and 0 when the lower switch of the cell is conducting.

Note that the chopper, which has a purely dissipative load, cannot generate a chaotic behavior. Nevertheless, it is well known since that power converter when it is connected to nonlinear
load may have a chaotic behavior. The chopper modeling is:

\begin{align}
\frac{dv_{C1}}{dt} &= \frac{u_2-u_1}{C_1}i_L \\
\frac{dv_{C2}}{dt} &= \frac{u_3-u_2}{C_2}i_L \\
&\vdots \\
\frac{dv_{C_{p-1}}}{dt} &= \frac{u_{p}-u_{p-1}}{C_{p-1}}i_L \\
\frac{dv_{L}}{dt} &= \frac{u_1-u_2}{E}v_{C1} + \frac{u_2-u_3}{E}v_{C2} + \cdots \\
&+ \frac{u_{p-1}-u_p}{L}v_{C_{p-1}} + \frac{u_p}{E}E - \frac{R}{L}i_L.
\end{align}

To simplify the study and the notations, we will study the overlapping operation of a converter with two cells (Figure 2). Its function is to supply a passive load (RL) in series with another nonlinear load connected in parallel with a capacitor [9]. Four operating modes are then possible as shown in Figure 3. Note that the floating source takes part in the evolution of the dynamics of the system only to the third and fourth mode. In the third mode, the capacity discharges and charge during the fourth mode. Thus, if these two modes last same time with a constant charging current, then the average power transmitted by this floating source over one period of commutation is null. We also notice that these two modes make it possible to obtain by commutation the additional level \(\frac{E}{2} \) on the output voltage \(V_s \).

As the switches of each cell are regarded as ideals, their behavior can be to model by a discrete state taking of the values 0 (on) or 1 (off). In practice, some of these states never will be visited for reasons of safety measures or following the strategy of order adopted or because of the structure of the converter him finally to even or comply with the rule of adjacency. The transitions are not necessarily controlled.

The system model can be represented by three differential equations giving its state space:

\begin{align}
L\frac{di_L}{dt} &= (u_1 - u_2)v_C - v_{C_l} - R i_L + u_2 E \\
C\frac{dv_{C}}{dt} &= (u_2 - u_1)i_L \\
C_l\frac{dv_{C_l}}{dt} &= i_L - g(v_{C_l}),
\end{align}
where

\[g(v_{C_l}) = G_b v_{C_l} + \frac{1}{2}(G_a - G_b)(|v_{C_l} + 1| - |v_{C_l} - 1|), \]

which is the mathematical representation of the characteristic curve of nonlinear load. The slopes of the inner and outer regions are \(G_a \) and \(G_b \). The parameters of the circuit elements are fixed as \(L = 50mH, C = 0.1\mu F, C_l = 40\mu F, E = 100V \).
3. Some basic properties of the multicellular chopper

For the power converters, many methods like phase portraits, bifurcation diagrams, and time–domain waveform can be used to analyze the nonlinear phenomenon in the system. In this work, the bifurcation diagrams and Poincaré sections are drawn based on the discrete iterated mapping model. Time–domain waveform, phase portraits, and power spectrum are obtained by building simulation module in Matlab/Simulink, which is analyzed from literature results. Rescaling equation (2.2) as $v_C = x_2B_p, v_{C1} = x_3B_p, i_L = x_1GB_p, G = \frac{1}{R}, t = \frac{C}{G}\tau$ and then redefining τ as t the following set of normalized equations are obtained:

\[
\begin{align*}
 \dot{x}_1 &= \beta(\gamma x_1 + \epsilon x_2 + x_3) + \alpha E \\
 \dot{x}_2 &= \epsilon x_1 \\
 \dot{x}_3 &= p(x_1 - g(x_3)),
\end{align*}
\]

(3.1)

where $\epsilon = u_2 - u_1, p = \frac{C}{C_1}, \beta = \frac{C}{LG^2}, \gamma = RG, \alpha = \beta u_2$. Obviously $g(x_3) = bx_3 + 0.5(a-b)|x_3 + 1| - |x_3 - 1|$, or

\[
g(x_3) = \begin{cases}
 bx_3 + a - b & x_3 > 1, \\
 ax_3 & |x_3| \leq 1, \\
 bx_3 - a + b & x_3 < -1.
\end{cases}
\]

(3.2)

Now the dynamics of equation (3.1) depends on the parameters $\epsilon, p, \beta, \gamma, a, b$ and α. The circuit parameters used are then rescaled as: $p = 25.10^{-4}, a = -15, b = 5, \gamma = 1$ and β variable.

3.1. Dissipativity

Preliminary insights concerning the existence of attractive sets [45] that might coexist in the system could be gained by evaluating the volume contraction/expansion rate ($\land = V^{-1}\frac{dV}{dt}$) of the multicell chopper modeled by (3.1) at any given point $x = (x_1 x_2 x_3)^T$ of the state space. The following expression can be derived:

\[
\land = \frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} = \begin{cases}
 -\beta \gamma - pb & |x_3| > 1, \\
 -\beta \gamma - pa & |x_3| \leq 1.
\end{cases}
\]

(3.3)

This means system (3.1) is dissipative system when $(\beta \gamma + pb) > 0$ or $(\beta \gamma + pa) > 0$. Note that $(-\beta \gamma - pb)$ is a negative value. Thus the volume elements are contracting. After a time unit this contraction reduces a volume V_0 by a factor $e^{-(\beta \gamma + pb)t}$. Which means that each volume containing the trajectory of this dynamical system converges to zero as $t \to \infty$ at exponential rate $(\beta \gamma + pb)$. Therefore, all system orbits are ultimately confined to a specific subset having zero volume and the asymptotic motion settles onto an attractor.
3.2. Symmetry and invariance

We can see the invariance of the system under the coordinate transformation $(x_1, x_2, x_3) \rightarrow (x_1, -x_2, x_3)$. Also note that, in the x_3 versus x_2 plane there is symmetry around the nominal value of the voltage of the floating capacitor that is 50V. This symmetry is shown in Figure 4. Parameters values are $p = 25.10^{-4}, \alpha = 2.10^{-2}(u_2 = 1), a = -15, b = 5, \gamma = 1$ and the initials values $(0, 5, 4)$.

![Figure 4: Phase plane strange attractors x_3 versus x_2](image)

3.3. Chaotic behavior

System (3.1) is solved numerically to define routes to chaos in our model using the standard three–order Runge–Kutta algorithm. For set f_s (switching frequency) parameters used in this work, the time step is always $\Delta t = 0.005$ and computation are performed using variables and constants parameters extended mode. For each parameter combination, the system is integrated for a sufficiently long time and transient is discarded. Three indicators are used to identify the type of transition leading to chaos. The first indicator is the Poincaré section, the second is a first return map and the third is the routes to chaos.

We now focus on the effects biasing on the dynamics of the two cells chopper connected to a nonlinear load modeled by equation (2.2). To achieved this goal, R or β is chosen as control parameter and the rest of system parameters are assigned the values: $p = 25.10^{-4}, \alpha = 2.10^{-2}, a = -15, b = 5, \gamma = 1$.

3.3.1. Poincaré section

To distinguish between chaos and quasi–periodicity, we need a special tool to uncover the hidden information contained in the steady–state trajectory of a system (i.e. attractor). The tool we use is called Poincaré section, which is a two dimensional plane that intersects the trajectory. By examining the way in which the steady–state trajectory intersects an appropriately chosen Poincaré section, we can tell if the steady–state operation is periodic, quasi–periodic or chaotic. The Poincaré section is computed for $x_1 = 0$ when $R = 10 \Omega$. From Figure 5 it can be seen that the symmetry is around the nominal voltage capacitor V_{Cn}. We also see a local symmetry around the floating capacitor voltages 0 and 100.
3.3.2. First return map

Another tool which illustrates the interesting dynamics of two cells chopper attractor is the Poincaré first return map. We again take a cross section of the band by cutting through it with a plane perpendicular to the flow (for our purposes the portion of the x_1 versus x_3 plane with $|x_1| < 0.01$ works well). We then record the x_3 value of a trajectory when it crosses our plane and graph it against the x_3 value of the next time the trajectory crosses the section. In this way we can investigate the mixing which is done by the twist in the attractor. From Figure 6 it can be seen that there is a folding point at each end of the cross and obviously symmetry occurs.

3.3.3. Routes to chaos

This nonlinear system exhibits the complex and abundant chaotic dynamics behaviors, the strange attractors are shown in Figures 7 and 8. These phase portrait are obtained by solving equations (2).
to (3) by means of Runge Kutta method for step size of 0.000001.

One of the routes to chaos observed in studied multicellular chopper is scroll doubling, which continues until there are no further stable states. At the beginning of simulation $u_1 = u_2 = 0$.

Now it is clear that the double scroll attractor has a structure quite different from the well-known Lorenz [21], Rössler [31] and the Chua [5] attractors since the double-scroll structure has not been observed with the latter attractors.

During system parameter changes, periodic state becomes unstable because of period doubling scroll. Between Ω and 50Ω, one has a double scroll centered around the equilibrium points. From 100Ω (Figure 7(e)), the second scroll tends to disappear.

For $R = 1000Ω$ and $R = 1500Ω$, the attractor evolves in to the limit cycles; the limit cycles are shown in Figure 8(g) and Figure 8(h).

The spectrum of this nonlinear system (2) is studied; its spectrum is continuous as show in Figures 7 and 8. We observe from these figures that the system exhibits chaotic behaviors.

4. Conclusions

In this paper, the dynamics properties of multicellular chopper have been investigated using numerical methods. The first return map, Poincaré sections and routes to chaos were used as indicators of chaotic behaviors. These indicators show that this system can have chaotic behaviors. These new attractors are different from the Lorenz attractor, Rossler and Chua, but it is a butterfly shaped chaotic attractor.

References

Figure 7: phase portraits: (a) : $R = 1 \Omega$, (b) : $R = 5 \Omega$, (c) : $R = 10 \Omega$, (d) : $R = 50 \Omega$, (e) : $R = 100 \Omega$
Figure 8: phase portraits: (suite)

(f) \(R = 500\Omega \),

(g) \(R = 1000\Omega \),

(h) \(R = 1500\Omega \),

(i) \(R = 5000\Omega \),

(j) \(R = 10000\Omega \)