Fixed point on generalized dislocated metric spaces

M.A. Ahmeda,b, Ismat Begc, S. Khafagya, H.A. Nafadid

aDepartment of Mathematics, Faculty of Science, Al-Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia
bDepartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
cCentre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan
dDepartment of Mathematics, Faculty of Science, Port Said University, Port Said, Egypt

(Communicated by Abdolrahman Razani)

Abstract

In the present paper, we introduce new types of convergence of a sequence in left dislocated and right dislocated metric spaces. Also, we generalize the Banach contraction principle in these newly defined generalized metric spaces.

Keywords: Fixed point, left dislocated metric, right dislocated metric, contraction.

2010 MSC: Primary 47H10; Secondary 54H25.

1. Introduction

Soon after Maurice Fréchet \cite{2} seminal paper on metric spaces researchers have started to generalize extend his idea. Menger \cite{5} was the first to propose probabilistic metric spaces, a generalization of metric spaces. Afterward a generalization pseudometric spaces/dislocated metric spaces of metric spaces was proposed by Hitzler and Seda \cite{4}, Hitzler \cite{3}, Hitzler and Seda \cite{4} and Beg et al. \cite{1} studied generalization of Banach contraction principle in dislocated metric spaces. Their results were applied in the area of programming language semantics.

Following Waszkiewicz \cite{6,7}, let \((X,d)\) be a distance space where \(d\) is a function from \(X\) into \([0,\infty)\). Define the distance topology on \((X,d)\) as follows:

1. Let \(x \in X\) and \(\epsilon > 0\). Then the set \(B_d(x,\epsilon) := \{y \in X : d(x,y) < d(x,x) + \epsilon\}\) is called ball with centre \(x\) and radius \(\epsilon\).

2. \(N_x := \{A \subseteq X : \exists \text{ some } \epsilon > 0 \text{ such that } B_d(x,\epsilon) \subseteq A\}\).

Email addresses: moh.hassan@mu.edu.sa (M.A. Ahmed), ibeg@lahoreschool.edu.pk (Ismat Beg), khafagy@mu.edu.sa (S. Khafagy), hatem9007@yahoo.com (H.A. Nafadi)

Received: October 2019 Accepted: December 2019
Theorem 1.3. Let \((X, d)\) be a complete \(d\)-metric space and let \(f : X \rightarrow X\) be a Banach contraction function. Then \(f\) has a unique fixed point.

We use the following lemma due to Ahmed, Zeyada and Hassan [9].

Lemma 1.4. Let \((X, d)\) be a \(ld\)-metric space. If \(f : (X, d) \rightarrow (X, d)\) is a Banach contraction function, then \((f^n(x_0))\) is a Cauchy sequence for each \(x_0 \in X\).
Lemma 1.5. Let \((X, d)\) be a rd-metric space. If \(f : (X, d) \to (X, d)\) is a Banach contraction function, then \((f^n(x_0))\) is a Cauchy sequence for each \(x_0 \in X\).

Theorem 1.6. Let \((X, d)\) be a complete ld-metric space and let \(f : X \to X\) be a Banach contraction function. Then \(f\) has a unique fixed point.

Theorem 1.7. Let \((X, d)\) be a complete rd-metric space and let \(f : X \to X\) be a Banach contraction function. Then \(f\) has a unique fixed point.

2. Definitions in distance spaces

In this section, we introduce definitions needed for our results in a distance space. As it turns out, these notions can be carried over directly from conventional metrics.

Definition 2.1. A sequence \((x_n)\) in a distance space \((X, d)\) is called a Cauchy sequence if \(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}\) such that \(d(x_m, x_n) < \epsilon\) \(\forall m, n \geq n_0\).

Definition 2.2. A sequence \((x_n)\) q-left-converges to \(x\) iff \(\lim_{n \to \infty} d(x_n, x) = d(x, x)\). In this case \(x\) is called a q-left-limit of \((x_n)\).

Definition 2.3. A sequence \((x_n)\) q-right-converges to \(x\) iff \(\lim_{n \to \infty} x, d(x_n) = d(x, x)\). In this case \(x\) is called a q-right-limit of \((x_n)\).

Definition 2.4. A distance space \((X, d)\) is called q-left (resp. q-right) complete if every Cauchy sequence is q-left (resp. q-right) convergent.

Definition 2.5. Let \((X, d_1)\) and \((Y, d_2)\) be distance spaces and let \(f : (X, d_1) \to (Y, d_2)\). Then \(f\) is q-left-continuous iff \(\forall x_0 \in X, \forall \epsilon > 0 \exists \delta(\epsilon) > 0\) such that

\[
|d_1(x, x_0) - d_1(x_0, x_0)| < \delta(\epsilon) \Rightarrow |d_2(f(x), f(x_0)) - d_2(f(x_0), f(x_0))| < \epsilon
\]

Definition 2.6. Let \((X, d_1)\) and \((Y, d_2)\) be distance spaces and let \(f : (X, d_1) \to (Y, d_2)\). Then \(f\) is q-left-continuous iff \(\forall x_0 \in X, \forall \epsilon > 0 \exists \delta(\epsilon) > 0\) such that

\[
|d_1(x_0, x) - d_1(x_0, x_0)| < \delta(\epsilon) \Rightarrow |d_2(f(x_0), f(x)) - d_2(f(x_0), f(x_0))| < \epsilon
\]

Definition 2.7. A function \(f : X \to X\) is called a Banach contraction function if there exists \(0 \leq \lambda < 1\) such that \(d(f(x), f(y)) \leq \lambda d(x, y)\) for all \(x, y \in X\).

Lemma 2.8. Every subsequence of q-left (resp. q-right) convergent sequence to \(x_0\) is a q-left (resp. q-right) convergent to \(x_0\).

Lemma 2.9. Let \((X, d_1)\) and \((Y, d_2)\) be distance spaces. A mapping \(f : (X, d_1) \to (Y, d_2)\) is q-left-continuous iff \(\forall (x_n)\) in \(X\) q-left- \(d_1\)-converges to \(x_0 \in X, (f(x_n))\) in \(Y\) q-left- \(d_2\)-converges to \(f(x_0) \in Y\).
Proof. Let f be q-left-continuous and (x_n) be a sequence in X. Suppose that (x_n) q-left-d_1-converges to $x_0 \in X$. Let $\epsilon > 0$. Then $\exists \delta(\epsilon) > 0$ such that

$$|d_1(x, x_0) - d_1(x_0, x_0)| < \delta(\epsilon) \Rightarrow |d_2(f(x), f(x_0)) - d_2(f(x_0), f(x_0))| < \epsilon.$$

Then $\exists \delta(\epsilon) > 0$ and $\exists n_0 \in N$ such that $\forall n \geq n_0$, $|d_1(x_n, x_0) - d_1(x_0, x_0)| < \delta(\epsilon)$. Thus

$$|d_2(f(x_n), f(x_0)) - d_2(f(x_0), f(x_0))| < \epsilon.$$

Hence, $(f(x_n))$ in Y q-left-d_2-converges to $f(x_0) \in Y$.

Conversely, suppose that f is not q-left-continuous. Then $\exists x_0 \in X, \exists \epsilon > 0$ such that $\forall \delta > 0$,

$$|d_1(x, x_0) - d_1(x_0, x_0)| < \delta(\epsilon) \Rightarrow |d_2(f(x), f(x_0)) - d_2(f(x_0), f(x_0))| \geq \epsilon.$$

Then the sequence (x_n) $(x_n = x \forall n \in N)$ q-left-d_1-converges to x_0 but $(f(x_n))$ does not q-left-d_2-converges to $f(x_0)$. □

We state the following lemma without proof:

Lemma 2.10. Let (X, d_1) and (Y, d_2) be distance spaces. A mapping $f : (X, d_1) \rightarrow (Y, d_2)$ is q-right continuous iff $\forall (x_n)$ in X q-right- d_1-converges to $x_0 \in X$, $(f(x_n))$ in Y q-right-d_2-converges to $f(x_0) \in Y$.

3. A generalization of Banach contraction mapping in left-d-metric space

In this section, we give a generalization of the Banach contraction mapping in left d-metric space.

Definition 3.1. A left-d-metric space (X, d) is called a q-left-Hausdorff space iff every left-q-convergent sequence (x_n) in X left-q-converges to a unique point in X.

Theorem 3.2. Let (X, d) be a q-left-Hausdorff q-left-complete ld-metric space and let $f : X \rightarrow X$ be a q-left-continuous Banach contraction mapping. Then f has a unique fixed point.

Proof. Existence: from Lemma 1.4, $(f_n(x_0))$ is a Cauchy sequence for each $x_0 \in X$. Since (X, d) is q-left complete, then $(f^n(x_0))$ q-left-converges to a point $x \in X$, say. From the q-left-continuity of the mapping f and Lemma 2.9, $(f^{n+1}(x_0))$ q-left-converges to $f(x)$. From Lemma 2.8, $(f^{n+1}(x_0))$ q-left-converges to x. Since (X, d) is a q-left-Hausdorff, then $f(x) = x$. □

Uniqueness: suppose that there are two fixed points x and y. Then

$$d(x, y) = d(f(x), f(y)) \leq \lambda d(x, y) = (1 - \lambda)d(x, y) \leq 0,$$

$$d(y, x) = d(f(y), f(x)) \leq \lambda d(y, x) = (1 - \lambda)d(y, x) \leq 0.$$

Since $(1 - \lambda) > 0$, then we have $d(x, y) = d(y, x) = 0$. Hence, we obtain from (Mii) that $x = y$.

The following counterexample illustrates that there exists a q-left-Hausdorff q-left-complete ld-metric space in which the converse of Proposition 1.1 [8] is not true.

Counterexample: Let $X = \{x, y, z\}$. Define $d : X \times X \rightarrow [0, \infty)$ as follows:

$$d(x, y) = d(z, x) = d(z, y) = \frac{1}{8}, d(y, x) = d(x, z) = d(y, z) = \frac{1}{6}, d(x, x) = \frac{1}{7}, d(y, y) = 0, d(z, z) = \frac{1}{4}.$$
(1) One can easily verify that (X, d) is an ld-metric space.

(2) Any sequence (x_n) in X is one of the following forms:

(a) $\exists n_0 \in N$ such that $\forall n \geq n_0, x_n = x$;

(b) $\exists n_0 \in N$ such that $\forall n \geq n_0, x_n = y$;

(c) $\exists n_0 \in N$ such that $\forall n \geq n_0, x_n = z$;

(d) $\forall n \in N$ such that $x_n = x \exists n \in N$ such that $m > n$ and $x_m = z$ and $\forall k \in N$ such that $x_k = z \exists l \in N$ such that $l > k$ and $x_l = x$;

(e) $\forall n \in N$ such that $x_n = y \exists n \in N$ such that $m > n$ and $x_m = z$ and $\forall k \in N$ such that $x_k = z \exists l \in N$ such that $l > k$ and $x_l = y$;

(f) $\forall n \in N$ such that $x_n = x \exists n \in N$ such that $m > n$ and $x_m = x$ and $\forall k \in N$ such that $x_k = x \exists k \in N$ such that $l > k$ and $x_l = y$.

Since only any sequence of form (a) is a Cauchy sequence and q-left-converges to x, then (X, d) is q-left-complete.

(3) One can deduce that any sequence of from (a) which are the only q-left-convergent sequences in X, q-left-converges to the unique point x. Hence (X, d) is q-left-Hausdorff.

(4) One can verifies that $\tau_d = \{X, \emptyset, \{y\}, \{x, y\}\}$ and note that any sequence of the form (b) τ_d-converges to x but does not q-left-converges to x.

Remark 3.3. Note that although (X, d) in Counterexample 3.1 is q-left-Hausdorff but (X, τ_d) is not Hausdorff.

4. A generalization of Banach contraction mapping in right-d-metric space

We give a generalization of the Banach contraction mapping in rd-metric space.

Definition 4.1. A right-d-metric space (X, d) is called a q-right-Hausdorff space iff every right-q-convergent sequence (x_n) in X right-q-converges to a unique point in X.

Theorem 4.2. Let (X, d) be a q-left-Hausdorff q-right-complete rd-metric space and let $f : X \to X$ be a q-right-continuous Banach contraction mapping. Then f has a unique fixed point.

Proof. Existence: from Lemma 1.2, $(f^n(x_0))$ is a Cauchy sequence for each $x_0 \in X$. Since (X, d) is q-right complete, then $(f^n(x_0))$ q-right-converges to a point $x \in X$, say. From the q-right-continuity of the mapping f and Lemma 2.2, $(f^{n+1}(x_0))$ q-right-converges to $f(x)$. From Lemma 2.1, $(f^{n+1}(x_0))$ q-right-converges to x. Since (X, d) is a q-left-Hausdorff, then $f(x) = x$. Uniqueness: suppose that there are two fixed points x and y. Then

$$d(x, y) = d(f(x), f(y)) \leq \lambda d(x, y) = (1-\lambda)d(x, y) \leq 0,$$

$$d(y, x) = d(f(y), f(x)) \leq \lambda d(y, x) = (1-\lambda)d(y, x) \leq 0.$$

Since $(1-\lambda) > 0$, then we have $d(x, y) = d(y, x) = 0$. Hence we obtain from (Mii) that $x = y$. The following counterexample illustrate that there exists a q-left Hausdorff q-right-complete rd-metric space in which the converse of Proposition 1.1 is not true. □

Counterexample: Let $X = \{x, y, z\}$. Define $d_1 : X \times X \to [0, \infty)$ by $d_1(a, b) = d(b, a) \forall a, b \in X$, where d is defined as in Counterexample 3.1. One can verifies that (X, d) is a q-right-Hausdorff q-right-complete rd-metric space. One can verifies that $\tau_d^{-1} = \{X, \emptyset, \{y\}, \{x, y\}\}$. Note that any sequence of the form (c) τ_d^{-1}-converges to x but does not q-right-converge to x.

Remark 4.3. Note that although (X, d_1) in Counterexample 4.1 is q-right-Hausdorff but (X, τ_{d_1}) is not Hausdorff.

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under project number No (RGP-2019-7).

References