Discussion on delay Bessel’s problems

Anmar Hashim Jasima,* , Batool Moufaq Al-Barama

aDepartment of Mathematics, College of Science, Mustansiryah University, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

This paper presents the delay Bessel’s problem, and therefore the basic definitions, theorems, applications, and corollaries will be reviewed during this paper.

Keywords: Eventually positive, eventually negative, oscillatory, Bessel’s problem.

1. Introduction

Delay differential (DDEs) are an oversized and vital category of projectile system, they typically arise in either natural or technological management problems, there are completely different sorts of delay differential equations, several authors are curious about the study of delay differential equation like O. Acino, M. L. Hbid and E. Ait Dads2, Tony Humphries10, George E. Chatzarakis6, William R. Derrick, Stanley Grossman11.

In this paper we study the delay Bessel problems which they’re denoted by (DBP), we have an interest in learning definitions, examples and therefore theorems for the delay Bessel’s problems.

As well as, the Bessel equation studied by Haniye Dehestani, Yadollah Ordokhani7, Dragana Jankova8, Ciemens market3, Fethi Bin Muhammad Belgacem5, martin Kerh8, Ahmed Fitauhi and M. moncef Hamza1, Orin J. Farrell9.

2. Discussion on Delay Bessel’s Problems

During this section, the DBP are studied and given with necessary and spare conditions, in this work a lot of elaborated definitions, examples and therefore theorems, preposition the delay Bessel’s problems.

*Corresponding author

Email addresses: dr.anmar@uomustansiryah.edu.iq (Anmar Hashim Jasim), batoolalbaram@gmail.com (Batool Moufaq Al-Baram)

Received: September 2021 Accepted: November 2021
Definition 2.1. The DBP are a variety of differential equations, in math’s from second order, it’s the 2 inequalities and the following equation.

\[x^2 y''(t) + a(t) xy'(t) + p(t) (x^2 - n^2) y(t - \tau) = 0 \] (2.1)

\[x^2 y''(t) + a(t) xy'(t) + p(t) (x^2 - n^2) y(t - \tau) \leq 0 \] (2.2)

\[x^2 y''(t) + a(t) xy'(t) + p(t) (x^2 - n^2) y(t - \tau) \geq 0 \] (2.3)

Where \(a(t) \geq 0, \) \(p(t) > 0 \) are continuous functions for \(t \in R^+ \) and \(n \geq 0, x \neq 0. \) Also,

\[
\lim_{t \to \infty} \int_{t-\tau}^{t} (x^2 - n^2) p(s) ds > \lim_{t \to \infty} \left[-x^2 \tau - \int_{t-\tau}^{t} x a(s) ds \right]
\] (2.5)

\[
\lim_{t \to \infty} \int_{t-\tau}^{t} (x^2 - n^2)p(s)ds > 0
\] (2.6)

Then (2.2) has eventually negative solutions.

Proof. Let \(y(t) \) be a solution to (2.2), to show that \(y(t) \) is eventually positive, which leads to a contradiction

\[y(t) > 0, \quad t > t_0 \]

\[y(t - \tau) > 0, \quad t > t_0 + \tau \]

From (2.2), \(y''(t) < 0, \quad t > t_0 + \tau, \quad y(t) < y(t - \tau), t > t_0 + 2\tau. \)

Dividing (2.2) by \(y(t) \) and integrating both sides from \(t - \tau \) to \(t \) for \(t > t_0 + 3\tau \) and by supposing that \(y(t) = e^t \), then we are obtaining the following:

\[
\frac{y(t - \tau)}{y(t)} \int_{t-\tau}^{t} (x^2 - n^2)p(s)ds \leq -x^2 \tau - \int_{t-\tau}^{t} x a(s)ds \]
\] (2.7)

\[
\int_{t-\tau}^{t} (x^2 - n^2)p(s)ds \leq \frac{y(t)}{y(t - \tau)} \left[-x^2 \tau - \int_{t-\tau}^{t} x a(s)ds \right]
\] (2.8)

Since \(\frac{y(t - \tau)}{y(t)} < 1 \), then

\[
\int_{t-\tau}^{t} (x^2 - n^2)p(s)ds < -x^2 \tau - \int_{t-\tau}^{t} x a(s)ds
\] (2.9)

Take the limit inferiors on both sides (2.9), it leads to the following results.

\[
\lim_{t \to \infty} \int_{t-\tau}^{t} (x^2 - n^2)p(s)ds < \lim_{t \to \infty} \left[-x^2 \tau - \int_{t-\tau}^{t} x a(s)ds \right]
\] (2.10)

Which leads to contradiction (2.4) and the proof is complete. \(\square \)
Theorem 2.3. Consider the delay Bessel inequality.

\[x^2 y''(t) + a(t)y'(t) + p(t)(x^2 - n^2)y(t - \tau) \geq 0 \] \hspace{1cm} (2.11)

Subject to the hypotheses of Theorem 2.2 and \(\lim_{t \to \infty} \inf \int_{t-\tau}^{t} (x^2 - n^2)p(s)ds > 0 \), then (2.3) has eventually positive solution only.

Proof. The same steps in Theorem (2.1) and by supposing \(y(t) \) is a solution to (2.3), to prove that \(-y(t)\) is eventually negative which leads to a contradiction. \(\square \)

Theorem 2.4. Suppose that the delay Bessel’s problems (2.1) exists and, \(\lim_{t \to \infty} \inf \int_{t-\tau}^{t} (x^2 - n^2)p(s)ds > 0 \). Then (2.1) has oscillatory solutions only.

Proof. when applying these same proof steps for the previous Theorems 2.2 and 2.3, we assume the opposite to get the contradiction. \(\square \)

Implementation

In this part of the work are some illustrative examples of delay Bessel’s problem and are a clear application of the theories mentioned earlier.

Example 2.5.

\[x^2 y''(t) + 0.27xy(t) + (x^2 - 1) y(t - 1) \leq 0 \]

Has eventually negative solution, \(y(t) = -e^t, \quad x = 1 \)

Example 2.6. Consider the delay Bessel

\[x^2 y''(t) + 3y(t - \tau) = 0 \]

has oscillatory solution, \(y(t) = \sin(t), \quad t = \pm n\pi \)

Example 2.7. Consider the delay Bessel inequality

\[x^2 y''(t) - 4xy'(t) + (x^2 - 4)y(t - 2\pi) \geq 0 \]

Than it has a positive solution, \(y(t) = t^2, \quad x = 2, \quad \text{when } t \leq 1/2 \)

Example 2.8. Let the delay Bessel’s equation

\[x^2 y''(t) + xy'(t) + (x^2 - \frac{1}{2})y(t - 3\pi) = 0 \]

has oscillatory solution, \(y(t) = t^{-1}, \quad \text{when } t = \sqrt{2}/2 \).

3. Conclusion

The most objective of this work is to review the delay Bessel’s issues and this comprise finding out the condition that understand eventually (positive, negative), oscillation wherever examples, theorems and corollaries are given to clarify every case.
Acknowledgements

I might wish to categorical my deep appreciation to my super visor Asst. Prof. Dr. Anmar Hashim Jasim, for her continuous support and valuable advice. Also, i might like to give thanks the employees members of the department of mathematics, college of science, Mustansiriya university for his or her support. Finally, i might wish to categorical my give thanks and feeling to my folks and my husband for his or her assistance.

References